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This paper contains a study, from the point of view of equations with a 
small parameter associated with higher derivatives, of thin elastic shells 
of a general shape, defined on surfaces of positive Gaussian curvature and 
fixed on the contour. 

1. The operator of the theory of thin elastic shells and 
the formulation of the basic theorem. We introduce on the middle 
surface S of the shell the orthogonal curvilinear coordinates x , x2, 
where x1 = const and x2 = const are lines of curvature. Let us d esignate 
by G the region of change of parameters x1, x2 on the plane x1 + ix,, 
which corresponds to the surface S. 

Let us assume that the boundary of the region G is a sufficiently 
smooth, closed, nonintersecting curve I. 

Let the length of an elementary arch be 

We will assume that the functions A,, A, are continuously differen- 
tiable to a sufficiently high order in G + L and A, > 0, and A, > 0 in 
Gi L. 

Let the Gaussian curvature of the middle surface S be positive, i.e. 

k,k,>O 

where k, and k, are the principal curvatures of the same surface. 

Let el, e2, e be the unit vectors along tangents to the lines x1, x2 
and to the norma 1 to the middle surface S respectively. 
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We start with relations IL2 1 

AlAa 3x2 ax2 

i=l 

where u is the vector of small displacements of the points on the middle 

surface S. 

‘lhe potential energy of deformation of a thin shell will be of the 

foIm121: 

E 

2 (I - 02) h [k2 + 2%&22 + E222 i- a(1 - ~)~12~] + 

where h is the thickness of the shell, E is Young’s modulus and u is 

Poisson’s ratio. 

‘lhe differential equations of equilibrium of the thin elastic shell 

obtained from the principle of the minimum potential energy wi-11 be 
written down in the form 

h (Bu + h2Nu)= A&q (1.3) 

where q is the external loading and 

Bu = 5 (Biu)ei, NU = i(IVi~)ei 

i=l i-1 

where 

Ku= & A?;(%1 -t=22) I+(% + E22)g$ - qg2 (42%2)) 



Equilibrium equations of thin elastic shells 181 

Let the vector q be continuous and continuously differentiable to a 

sufficiently high order in C + L. 

Assune further that 

q=qo(%, %I + Ql(% % h) (1.4) 

where q0 & 0 does not depend on h and 

b&l\\~q+dz&c, = 0 (I.51 

We introduce the vector Ufhu which, by virtue of (1.3) and (1.41, 

satisfies the equation 

BU + h2NU = A,& [qo (21, ~2) + q, @I, 22, h)l (4.6) 

Let us consider the following tvm problems. 

Problem A. Let the vector U = lJitl + lJ2t2 + Up3 satisfy the equation 

(1.6) and the boundary condition 

U&J=U2%A-J 
1 2 3 

th 
on L (1.7) 

where v is the normal to the curve L. 



182 V.S. Zhgenti 

Problem B. Let the vector U, = (J1Oel + Uz0e2 + C$Oes satisfy the 
equation 

BUo = &%I, (21, ZJ (1.8) 

and the boundary condition 

lJ1, = us0 = 0 on L (1.9) 

We note that the problems A and B are formulated correctly. 

Basic Theorem. If U and U0 are solutions of problems A and B, then 

U = U, + U, + U, (1.10) 

where the vector U1 = uilel + C$ le2 + 1131t3 has the form: 

u,, = {a,hl’z cos (gh-I”) + h [6, sin (gh-I”) + ci cos (g/z-l”) + d,]} e--gh-“’ 

Uzl = {a2h”p cos (g/z-‘/‘) + h [b 2 sin (gh-“‘) + c2 cos &4~-~“) + da]} e--gh-“’ (1.11) 

Usi = {us [sin (gh-“‘)+cos (gh-“‘)]+b,h”‘[sin (gh-I”)-cos (gh-“‘)+I]} e-ghuxh 

whereby the function g, determined in a certain neighborhood Cl of the 

boundary L, becomes zero on L and is positive at points of the region G. 

‘lhe vector U2 depends on h in such a fashion that 

lim 1 U, ]2dz1dz2 = 0 
h-to ss 

G 

2. Basic inequality. We consider the equation 

Bv+h2Nv=Q 

Let us now prove the following lenma. 

Lemma. If the vector 

v = vlel + u2e2 + use3 

(1.12) 

(2.1) 

satisfies the equation (2.1) and the boundary condition 

2)i = va = a3 z 2 = 0 on L 

then 

(24 

~SIV!~~~~~~~~~~IQI~~~,~~, (2.3) 

G G 

where y is a positive constant number not dependent on h, v and Q. 

Inequality (2.3) will be called the basic inequality. 

Proof. We introduce the notation 
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(\.11 v,) ss VlV2 dx, dx, 
G 

Applying the boundary conditions (2.2) and the inequality a2 + b2 t 
2uab > (l- o)(a2 + b2) we easily obtain 

(2.4) 

where 

AlA2>,Ao>0 in G-1-L 

'Ihe following equation holds: 

i Eij (V)Eij (W)A,fl, 7: 

i, j-1 

where 

I’,w = - n,l& [klE,I (W) -{- k.,E,, (W)] 

Let us consider the system of differential equations 

p,w Z~zz 0 (i : 1, 2, 3) 

From the equation P3w = 0 we obtain 

(2.6) 

Introducing (2.7) into equations P,w = 0, P2w = 0, we obtain 

whereby 
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It is not difficult to calculate 

Hence it follows that system (2.8) is a system of elliptic type in 

region G, since k,k, > 0 in that region. 

As is known (see for example [ 3 1 1, there exists a fundamental matrix 

of system (2.8). Each column of this matrix, with x G and n # y, satis- 

fies the same system. 

Consider the following system of vectors 

‘pl = ullel -I- “21ez + mgle3, (~2 L= 012e1 + 022e2 + os2e3 

where functions 9i(j = 1, 2) are determined by formula (2.7). 

It is easily seen that for .z G and 1: f y the vectors +j(j = 1, 2) 

satisfy system (2.6). 

Let the point y(yl, y2 ) lie within G. We isolate this point by a circle 

K, of radius c . We form the integral 

2 

-I ss 2J &ii (v) ~ij (yn) A~&P&~zP (n=l, 2) 

G-K, i,j=l 

From this integral, using equation (2.5), system (2.6) and boundary 

condition (2.2)) and passing to the limit as c + 0, we obtain 

‘lhe kernels of the integrals possess a weak singularity, and these 

integrals, as is known, bounded in L, (Cl, are operators on c 
the boundedness of these operators it follows 

ij(v). From 

(2.10) 

where y1 = const > 0 does not depend on V. 
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Applying inequality 2 ab 2 - (a2 + b*), from (2.4) we can obtain 

EA, (I- a) 
,fBvvv)+ a(1 -j-a) 

(Eij’)2 dX,dX, 
G i,j=l 

(2.11) 

El1 
, _ 1 do, __k 

--T_ 

Al dx1 lVJ9 &ll” ” Al/l2 ax, 
__BAIV I 

2 

Now from (2.41, applying (2.101, we can deduce 

(*v,v)>, rz\\ i (Eij”)2 d~ld~, 
G &j--l 

where y2 = const > 0 does not depend on V. 

From (2.111, by virtue of (2.12), it follows 

(Bv,v)>~~\ \ i (Eii')adXldG 
G i. j-l 

(2.12) 

(2.13) 

where y3 = const > 0 does not depend on V. 

It is easily deducible that 

G i, j=l G 

where yU = const > 0 does not depend on V. 

From (2.141, applying the inequality cx* + b2 > 1/2(a - b)* and the 
equation 

au, avz -.- 
ax2 ax, - $- ;$ ) dxldx, = 0 

1 2 
G 

we can deduce 

(2.15) 

where y5 = const > 0 does not depend on V. 
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Now we can write down the following inequality: 

where 

From (2.16), by virtue of 2ab < a* + b*, we obtain 

2 ss 2 (Eij’)2 dx,dx, + $ (1 - ~)raSS[(~)2+(~~]dxldZ2~ 
G Lj-1 

>/(I -,,,,S\vs’dxldx, (2137) 

G 

where 

+STW & Qrs7 k12 + ks2 > 77 > 0 in G-j-L 

Applying (2.15), f rom (2.17) we can now deduce 

\ \ i (Eij')2dxldx*>/rsSSV~2dx~dxa (2,1&j 

G i,j=l G 

where y* = const > 0 does not depend on V. 

From (2.13), by virtue of (2.18), it follows that 

(Bv~)>,,,\\v,~d~% 
G 

where yg = const > 0 does not depend on V. 

Now from (2.4), applying (2.101,. we may also deduce 

(Bv,v)> a< \\(vI~ + ~2”) ddx2 

G 

Adding the inequalities (2.19) and (2.201, we obtain 

(Bv,v)>~lo\\ I v12dx~dx2 

G 

where yIO = const > 0 does not depend on V. 

From equation (2.1) we can deduce the following equality 

(Bv,v)+ /L~(Nv, v)= Qv 

(2.19) 

(2.20) 

(2.21) 

(2.22) 
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Applying the boundary condition (2.2), we easily obtain 

(Nv,v)> E 
12 (I + 0) 

(2.23) 

i, j=l 

Taking into account (2.4) and (2.23), from (2.22) we can obtain 

CQv) 2 W,v) 

Hence, applying (2.21), there follows 

From (2.24), by virtue of Qv,< l/2(\ v12 + 1 Q12), we can deduce 

Hence there follows the basic inequality (2.3), and the lenma is 

proved. 

3. Proof of the basic theorem. We now proceed to the proof of 

the basic theorem formulated in Section 1. 

Vector CJ2'.= U- U. by virtue of (1.6) and 

(1.8), 

--U12e, + U22e2 + U32e3p 
satisfies the equation 

BUS’ + h2NU2’ = A&q, (x1, x2, h) - h2NU; (3.1) 

and by virtue of (l-7), (1.91, the boundary condition 

1712' -= Uz3) = 0, U32'=-lJ30, a+ = - $$ oa L (3.2) 

We introduce the vector u,* = Ull*el + U21*e2 + U31e3 which satisfies 
the equation 

BU; + h2NU1’ = 0 (3.3) 

and the boundary condition (3.2). 

The vector Ul* will be sought in the form 

ur*= Ur+R 

where the vector U, is determined by formulas (1.11). 

Introducing (3.4) into equation (3.3), we obtain 

(3.4) 



188 V.S. Zhgcnti 

&R + /z2fV,R = g {[2 

+ (1 + 5)p1p2u2 + 2&(k, + 5k,)pla,) exp(-ggh-i’P)sin(gh-l”) + 

+ & ([2 +p + (1 - 5) $P22]C1 + (1 + 4 P2P2C2 + h(l) (%,a,,% g) 
> 
x 

x exp f-glz-“‘)sin(gh-‘I’) - $&j { [2 2 p12 + (1 - s) 2 pa21 b3. + 

+ ( 1 + 0) p&2 + h(l) ( al, u2, u3, 4, g) 1 exp (-- gh-‘9 cos(gh+) + 2& x 

x 2++(1- 
-iI 4$$z2]4 + (1 + ~)Ps~ +2-%& + CW p&s} x 

x exp (-gh”“) + i {h’@ [Fiflf cos (g-“‘) + @pi(‘) sin (gh-I”) + y.i”‘]} x 
i=l 

x exp (- g/2-“‘) (3.5) 

B,R+hW,R= lz ((1 + 3) PlPZ%-k p &2 +(I - 4$12]u2 + 

+ 24(& 4 ~2)p2a,}exp(-ggh-'l')sin(gh-.'q+ A{(1 + ~)plpzcl + 

+ [2 2 pz2 + (1 - G) 2 pIa] c2 + fl@) (aI, u2, u3, g)) exp (- gh-“) sin (g/t-“‘) - 

-+U + Q)p1p261+[2 $$2+(~ --0)~p12]ba+f2(z’tu,,u,, u,, b,, g)} x l-aa 

xexp C-- gh") ~0s (dz-"7 + 2 c1 ~+I 
C 
(1 4 Qw24 + 

+[2 $pz2 + (1 -0) $ple]d2 + 24(3& + k2)p,b,}ew(--ggh-'l*) + 

+ i {/z"'~ [Fi(z) cos (g/z-%) + 0ti(2fsin (gh-“) + xi2’]} exp (- gh”‘“) (3.6) 
i=l 

B,R + h2N,R = & 
1 
--A, (k, -t ok2) ~1~1 ---A,(& + k,)pza2 + 

+[--~1~2(~12 -I- k22+2Qklk2) + &($I2 + $22p3) x 

X [sin (gh-I”) + cos (g/2-“‘)] exp (- gh-‘I”) + 
P R 

+ 2 {hl”i [zp’ co9 (&J2) + ap sin (gh-I”) + xJ3)]} exp (- gh+) (3.7) 
i=l 

where 
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We consider the system of equations 

[2~P?+(3--)~p2qa 1 + (1 + 0)~1w2 + 2A2(kl + 0k2)w3 = 0 

(1 + 4~1~24 +[2 $p2’+(1 --)$2p12]a2 + 2Al(& +k,)p2~3 = 0 (3.8) 

- A2 (4 + ak2) PIN,- 4 (4 + k2) ~2~2 + 

+ [ - 44 (h2 + k22 + 2&k,) + &2 (2 p12 + 2 pe2)‘] ~3 = 0 

bating to zero the determinant of this system, we obtain 

($p12 + $22)4- 3 (1 - a”) (A22k2p,2 + A,2kIp22)2 = 0 (3.9) 

We determine the function g such that it satisfies equation (3.9), 

that it vanishes on L and that it is positive at points of the region G. 
To prove the possibility of constructing such a function we apply the 

method presented in paper [4 1. 

‘Ike differential equations of characteristics 

ing foxm (see for exanple I5 I, Section 56): 

dzl =$$' +$22~$p1-12(1 --a") (A22k2pla dt +A,2k,p22)A22k2~1(3.10) 

(3.9) have the follow- 

*a 
- = 8 (2 p12 + 2 ~2~j2 2 ~2 - 12 (1 - G”) (Az2k,p12 + A12klp22) A,2k,p, dt 

(3.11) 

*PI 
dt= - 4 (2 P12 f $P22)s[Pl2& (2) + P22& ($)I + 

+ 6(1 - a”) (A22k2p12 + A 1 2k 1~2’) [P” & (Az2k,) + ~2~ $ (42kl)] (3.12) 

F~=-q$pla+$P22)S[Pl2&(gg + p22g-(3]+ 

+ 6 (I- a”) (A22k2P12 + 42k,p22) [p12 g (A22k2) + p22a& (A12kl)] 

(3 13) 

- 

s = 8 (2 p12 + 2 pa’)’ - 12 (1 - 02) (A22k2p12 + A12klp2’)2 (3.14) 

Let the boundary L be given by equations x1 = n,(s), x2 = r2(s), 
where s is the arc length of the curve L. 
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Applying (3.10) and (3.11) we obtain 

- 12(1 - 02)(A,%p,2 + A,2k,p,2)IA,*/C,s,'(S) ps - A,%,sz’(s)pJ (3.15) 

Since g = 0 on L, it follows 

PI% (4 + P*X,’ (s) = 0 

h virtue of the last of equations (3.9) we may obtain 

p1 = _ 14/3 (1 _ u2) l~z%?z’* (s) + ~l*klxl’* (41”’ 
(A2l 4) %'2 (4 -I- (A, / AZ) 23'2 w 

x2’ (s) 
(3.16) 

p2 = ?3(1 _ Oz) lA2k~~~'2 (s) + Al"k1x1'2 WI” 
(AZ / ‘41) 51’2 (.y) + (Al / 112) 22'2 (s) 

21’ (4 

Introducing (3.16) into (3.15), we obtain 

'Thus, at each point of the boundary L the projection on the plane 

x1 + ix, of the characteristic does not touch L. 

As is known (see for example [5 1, Section 56), it follows from this 

that there exists a function g in a ceFtain neighborhood of the boundary 

L which satisfies the equation (3.9) and vanishes on L. 

Receding from the boundary L (where g = 0) into C along the character- 

istics, from (3.141, by virtue of (3.9), we may deduce 

By virtue of equations (3.16) we will have 

$P12‘!. zp22>o on L 

JJence we may conclude that owing to continuity there exists a certain 

small vicinity-Q of the boundary L, in which 

$Pl 2 -I_ 2 p22 ) 0 

the From (3.17), applying the inequality (3.181, we may deduce that in 

region Q dg/dt = 0. It follows from this that g > 0 at points of the 

(3.17) 
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region C belonging to the vicinity of Cl of the boundary L. 

We note that in the case of the spherical segment 0 ( 8 ( 8,, the 
function g has the form: 

g== rf+3(1-02)(90-9) 

where r is the radius of the sphere. In this case the width of the bound- 

ary layer 6, measured in radians, may be calculated by the formula 

6 = 4 k 'f* 
() 

l&-o') r 

'lhe following equations hold good on L because of the properties of 
the function g and the boundary condition (3.2): 

a&h + h (cl + d,) + RI = 0 

a2h’l* + h (c2 + d,) + R, = 0 (3.19) 

a, -j- R3 = -UsO, $?+b3$~_+a+=-a$ 

As functions a3, b we may take arbitrary functions which 
tinuously different1 *J le a sufficient number of times, which 

boundary condition 

a3 = - Use, b3=-(a++?$)/-$ on L 

and which vanish outside fl. It is not difficult to show that 

on L. 

are con- 

satisfy the 

(3.20) 

ag/au > 0 

Ihe functions ai, a2 are determined from the following system: 

I 
2 $12 + (1 - 42 P22] al + (1 + 0) m2a2 = - 2A2 (k + dt2)pla3 

(3.21) 

(1 + Q) p1p2al + [2 2 Pza + (1 - 01% PI”] a2 = - 24 (a& + k,) p2a3 

'Ihe determinant of this system has the form: 

2(1 - o)($12 + 2: P22j2 

It is seen that, by virtue of (3.181, the determinant is different 

from zero and therefore the system (3.21) is solvable in fl. Outside 0 the 

functions a 1’ a2 are equated to zero. 

In this fashion the functions a 
1' a2’ a3 satisfy the system (3.8), 

since the determinant of this homogeneous system is equal to zero. 

'Ihe functions b,, b,, cl, c2, d d 
1' 2 are determined from the following 
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systems: 

p $2 + (1 - 0) 2 P22] Cl -I- (1 + 0) p1p2c2 =-J,(l) (a,, a,, u3, g) (3.22) 

(1 + 0) PlP2Cl + [2 $2 -I- (1 - g> 2 Pl2J c2 = -/l(2) (a,, a2, u3, g) 

[2 $Pl2 + (1 - 0) 2 P22] 61 i- (1 + 5) PIP2~2 := - fe(‘) (a,, a2, a3, b,, g) 

(1 + D) PIP&l + [2 $P22 + (1 - 0) 2 Pl2] b2 = - f2” (a,, a2, u3, b,, g) 

(3.23) 

[2 2 ~1~ + (1 - 0) 2 ~2~1 Cl, + (1 + 0) ~1~2d2 = - 2A2 (kl + 0k2) plb3 

(3.24) 

(1 + a) p;pzdl + [2 2 ~2~ + (1 - G) 2: p12] d, = - 2A, (okI + k,) p2b, 

We note that the right-hand sides of these systems vanish, together 

with al, a*, a7, b,, and therefore the functions cl, c2, b,, b,, d,, d, 
may be equated to zero outside Q. 

‘Ihe vector R, by virtue of (3.81, (3.221, (3,231, (3.24), (3.5), (3.61, 

(3.71, satisfies the equation 

BR + h2NR = i {W[F. t cos (g/z-‘/z) + Cb,i sin (g/2-‘/2) + xi]} exp (- g/2-‘/2) 
i=l (3.25) 

and by virtue of (3.191, (3.201, the boundary condition 

a,hn + h (cl + d,) + RI = 0, u,h’h + h (c2 + d,) + R, = 0 

R,=T=O on L 
(3.26) 

Let us consider the vector R’ = /~“~r, + hr, + R = Rl’el + R2’e2 + R3’e7 
where 

rl = ale1 + a2e2, ~2 := (~1 + d,) el + (c, + d,) e2 

‘his vector, by virtue of (3.25), satisfies the equation 

BR’ + h2NR’ = i {h’hi [Fi cos (gk’lz) + @i sin (g/?/t) + 

i=l 

+ Xi]} exp (- g&‘/s) + WBr, + hBr, + h‘J~ Nrl + h”Nr, (X27) 

and, by virtue of (3.261, the boundary condition 
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R1' = R,’ = &’ z av = 
a&’ 0 on L (3.28) 

‘lhe basic inequality (2.3) may be applied to the vector R, since, by 

virtue of (3.28), it satisfies the conditions of the lemna, and therefore, 

taking into account the right-hand side of equation (3.271, we obtain 

;ra\\jR’j2dz,dx2 =O 

+c; 

It follows that 

lim 
ss h+o G 

1 R I2 dz, dz, = 0 (3.29) 

We now consider the vector 

U,’ = U2’ - UI’ = U12e1 + Ui2e2 + Ui2es 

which, by virtue of (3.1), (3.3), satisfies the equation 

BU2’ + h2 NU2’ = &l,q, (rl, 22, h) - ha W, (3.30) 

and, by virtue of (3.2), the boundary condition (3.28); 

Now applying to the vector U2* the basic inequality (2.3), since it 

satisfies the conditions of the lemna, and taking into account the right- 
hand side of equation (3.30) and condition (1.5), we obtain 

lim 
ss 

j U2* la dz, dx, = 0 

h-+a G 

It is not difficult to derive 

u = u, + U1’ + us* 

Hence, applying formula (3.4), we obtain the inequality (1.18 

U2 = R + U2* 

Now, taking into account (3.29), (3.31) and (3.321, we obtain 

tion (1.12). ‘lhe basic theorem is thus proved. 

It is not difficult to prove that if the condition 

I 91 I2 d& dz2 = 0 (4 

is satisfied, then 

(3.31) 

1, where 

(3.32) 

condi- 
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ss 1 U, I2 dz, dx, = 0 (h). 

G 

It follows from the basic theorem that 

lim jU-U~-U~(adxldx~=O 
h-0 ss 

G 
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